Abstract

We report the synthesis and optoelectronic properties of 16 thiophene-based heterophenoquinones. These compounds were accessed in a convergent and modular approach, allowing for their efficient synthesis. Tuning of the optical band gap was achieved through π-extension by annulation of a benzene or tropone moiety to the thiophene, oxidation, change of the heteroatom or by attachment of a donor substituent to the thiophene core. The resulting compounds display intense colors covering the entire visible spectrum. We identified structure-property relationships and their impact on the HOMO and LUMO levels. Additionally, these materials change color upon reduction and according to in situ ultraviolet-visible-near infrared (UV-vis-NIR) and electron paramagnetic resonance (EPR) spectro-electrochemistry, they are promising electrochromes with cathodic color changes. Seven different electrochromic devices were constructed which all displayed a change in color upon reduction, demonstrating the potential of these new dyes in for example tintable glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.