Abstract

This study aimed to investigate the effect of the n-butanol fraction of Terminalia catappa Linn., (FBuTC) on biofilm of Candida albicans and Candida glabrata, as well as changes in color and roughness of polymethyl methacrylate resin (PMMA). The susceptibility of C. albicans and C. glabrata to FBuTC was evaluated by means of the Minimum Inhibitory and Minimum Fungicidal Concentration (MIC and MFC). PMMA acrylic resin discs (N= 108) were fabricated. For the susceptibility tests, biofilms of C. albicans and C. glabrata were developed on discs for 48 h and immersed in phosphate-saline buffer solution (PBS), 1% sodium hypochlorite (SH 1%), or FBuTC at MIC, 5xMIC, or 10xMIC. For the color and roughness change tests, the discs were immersed in distilled water, SH 1%, or FBuTC in the concentrations of 0.25 mg/mL, 2.5 mg/mL, or 25.0 mg/mL. After 28 days of incubation, color change was evaluated by spectrophotometry and roughness, by using a profilometer. The biofilms were investigated by one-way ANOVA and, the color and roughness changes (two-way ANOVA and the Tukey test; α=0.05). For both MIC and MFC the value of 0.25 mg/mL of FBuTC was observed for the planktonic cells of C. albicans and C. glabrata. Exposure to FBuTC at 10xMIC had a significant effect on the biofilm of C. albicans, showing a reduction in cell counts when compared with PBS, (p=0.001). For the biofilm of C. glabrata, the MIC was sufficient for significantly reducing the cell count (p<0.001). No important changes in color and roughness of the acrylic resin were observed, even after 28 days, irrespective of the concentration of FBuTC used (p >0.05). It could be concluded that the immersion of acrylic resin for dental prosthesis in FBuTC was effective in reducing the biofilms of C. albicans and C. glabrata without evidence of change in roughness and color of this substrate.

Highlights

  • For decades the public oral health policy in underdeveloped or developing countries was based on tooth extraction for the prevention of pain, caries, and infection, among other oral problems

  • The aim of this study was to investigate the effect of the n-butanol fraction of Terminalia catappa Linn. (FBuTC) on biofilm of Candida albicans and Candida glabrata

  • The susceptibility of planktonic cells of C. albicans (ATCC 90028) or C. glabrata (ATCC 2001) to FBuTC was evaluated by means of Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) tests considering the effects on the acrylic resin substrate, these were measured by means of surface roughness and color change tests

Read more

Summary

Introduction

For decades the public oral health policy in underdeveloped or developing countries was based on tooth extraction for the prevention of pain, caries, and infection, among other oral problems. This curative practice is reflected in the contemporary population, in which we have found a high number of partially or completely edentulous individuals [1]. Acrylic resin is colonized by oral endogenous bacteria and Candida spp. and, eventually, by extraoral species, such as Staphylococcus spp. or members of the Enterobacteriaceae family This microbial reservoir may be responsible for denture-related stomatitis and aspiration pneumonia, a life-threatening infection, especially in geriatric patients [3]. In view of this context, adequate control of the biofilm formed on denture surfaces is of outstanding importance, for oral health, and for the general health of denture-wearers

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call