Abstract

The utility of three-dimensional heteronuclear NMR spectroscopy for the assignment of 1H and 15N resonances of the inflammatory protein C5a (MW 8500), uniformly labeled with 15N, is demonstrated at a protein concentration of 0.7 mM. It is shown that dramatic simplification of the 2D nuclear Overhauser effect spectrum (NOESY) is obtained by editing with respect to the frequency of the 15N heteronucleus in a third dimension. The improved resolution in the 3D experiment largely facilitates the assignment of protein NMR spectra and allows for the determination of distance constraints from otherwise overlapping NOE cross peaks for purposes of 3D structure determination. The results show that 15N heteronuclear 3D NMR can facilitate the structure determination of small proteins and promises to be a useful tool for the study of larger systems that cannot be studied by conventional 2D NMR techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.