Abstract
Heterologous in vitro fertilization (IVF) is an important tool for assessing fertility of endangered mammals such as the jaguar, considering difficult access to females for artificial insemination and to obtain homologous oocytes. We aimed to evaluate the fertility of jaguar sperm cryopreserved with different extenders, using domestic cat oocytes to assess the development of hybrid embryos. Semen from four captive jaguars was obtained by electroejaculation. Samples were cryopreserved in powdered coconut water (ACP-117c) or Tris extender containing 20% egg yolk and 6% glycerol. Thawed spermatozoa were resuspended (2.0 × 106 spermatozoa/mL) in IVF medium and co-incubated with cat oocytes matured in vitro for 18 h. Presumptive zygotes were cultured for 7 days. After 48 h, cleavage rate was evaluated, and non-cleaved structures were stained for IVF evaluation. On days 5 and 7, the rate of morula and blastocyst formation was assessed. Data were analyzed using the Fisher exact test (p < 0.05). No difference was observed between ACP-117c and Tris extenders, respectively, for oocytes with 2nd polar body (2/51, 3.9 ± 2.9% vs. 2/56, 3.6 ± 3.1%), pronuclear structures (5/51, 9.8 ± 4.7% vs. 8/56, 14.3 ± 8.0%), and total IVF rates (7/36, 19.4 ± 5.0% vs. 10/37, 27.0 ± 13.8%). All the samples fertilized the oocytes, with 22.9 ± 3.2% (16/70) and 16.7 ± 3.6% (12/72) cleavage of mature oocytes for ACP-117c and Tris extenders, respectively. Morula rates of 4.3 ± 2.3% (3/70) and 5.6 ± 2.2% (4/72) were observed for ACP-117c and Tris, respectively. Only the Tris extender demonstrated blastocyst production (2/12, 16.7 ± 1.5% blastocyst/cleavage). We demonstrated that jaguar ejaculates cryopreserved using ACP-117c and Tris were suitable for IVF techniques, with blastocyst production by ejaculates cryopreserved in Tris. This is a first report of embryos produced in vitro using jaguar sperm and domestic cat oocytes through IVF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.