Abstract

Polyketide synthases (PKSs) are bacterial multienzyme systems that synthesize a broad range of natural products. The 'minimal' PKS consists of a ketosynthase, a chain length factor, an acyl carrier protein and a malonyl transferase. Auxiliary components (ketoreductases, aromatases and cyclases are involved in controlling the oxidation level and cyclization of the nascent polyketide chain. We describe the heterologous expression and reconstitution of several auxiliary PKS components including the actinorhodin ketoreductase (act KR), the griseusin aromatase/cyclase (gris ARO/CYC), and the tetracenomycin aromatase/cyclase (tcm ARO/CYC). The polyketide products of reconstituted act and tcm PKSs were identical to those identified in previous in vivo studies. Although stable protein-protein interactions were not detected between minimal and auxiliary PKS components, kinetic analysis revealed that the extended PKS comprised of the act minimal PKS, the act KR and the gris ARO/CYC had a higher turnover number than the act minimal PKS plus the act KR or the act minimal PKS alone. Adding the tcm ARO/CYC to the tcm minimal PKS also increased the overall rate. Until recently the principal strategy for functional analysis of PKS subunits was through heterologous expression of recombinant PKSs in Streptomyces. Our results corroborate the implicit assumption that the product isolated from whole-cell systems is the dominant product of the PKS. They also suggest that an intermediate is channeled between the various subunits, and pave the way for more detailed structural and mechanistic analysis of these multienzyme systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.