Abstract

The demand for frozen-dough products has increased notably in the baking industry. Nowadays, no appropriate industrial baker's yeast with optimal gassing capacity in frozen dough is, however, available, and it is unlikely that classical breeding programs could provide significant improvements of this trait. Antifreeze proteins, found in diverse organisms, display the ability to inhibit the growth of ice, allowing them to survive at temperatures below 0 degrees C. In this study a recombinant antifreeze peptide GS-5 was expressed from the polar fish grubby sculpin (Myoxocephalus aenaeus) in laboratory and industrial baker's yeast strains of Saccharomyces cerevisiae. Production of the recombinant protein increased freezing tolerance in both strains tested. Furthermore, expression of the GS-5 encoding gene enhanced notably the gassing rate and total gas production in frozen and frozen sweet doughs. These effects are unlikely to be due to reduced osmotic damage during freezing/thawing, because recombinant cells showed growth behavior similar to that of the parent under hypermosmotic stress conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call