Abstract

The processive endoglucanase Cel9A of the moderately thermophilic actinomycete Thermobifida fusca was functionally produced in Saccharomyces cerevisiae. Recombinant Cel9A displayed activity on both soluble (carboxymethylcellulose) and insoluble (Avicel) cellulose substrates confirming its processive endoglucanase activity. High-performance anionic exchange chromatography analyses of soluble sugars released from Avicel revealed a cellobiose/glucose ratio of 2.5 +/- 0.1. Growth by the recombinant strain on amorphous cellulose was possible due to the sufficient amount of glucose cleaved from the cellulose chain. This is the first confirmed report of S. cerevisiae growing on a cellulosic substrate as sole carbohydrate source while only expressing one recombinant gene. To improve the cellulolytic capability of S. cerevisiae and to investigate the level of synergy among cellulases produced by a recombinant host, the cel9A gene was co-expressed with four cellulase-coding genes of Trichoderma reesei: two endoglucanases cel5A (egII) and cel7B (egI), and two cellobiohydrolases cel6A (cbhII) and cel7A (cbhI). Synergy, especially between the Cel9A and the two cellobiohydrolases, resulted in a higher cellulolytic capability of the recombinant host.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.