Abstract

The UV/sulfite system is a promising source of •SO4− and/or •OH, but its application is largely limited by the use of UV light due to its high cost and high energy consumption. Graphite carbon nitride (g-C3N5), as a new photocatalytic material, has better visible light absorption capacity and narrower band gap than g-C3N4, which is expected to activate sulfite under visible light to solve this problem. Herein, a novel FeS2/CN heterojunction material based on g-C3N5 was constructed by hydrothermal in-situ synthesis method and successfully activated sulfite, which was confirmed by tetracycline degradation experiments in water. Under optimized conditions, the degradation rate of TC in 1 h reached 96%. The experimental results revealed that the FeS2/CN heterostructure enhances the absorption of visible light and inhibits the recombination of carriers, enabling more electrons and holes to be utilized. Holes play a major role in the degradation reaction, promote the sulfite chain reaction, and effectively regulate the cycle of Fe2+ and Fe3+ in the solution. Iron ion leaching is negligible and the degradation reaction remains stable at pH 5–9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call