Abstract

Design and fabrication of efficient and stable photocatalysts are critically required for practical applications of solar water splitting. Herein, a series of WSe2/TiO2 nanocomposites were constructed through a facile mechanical grinding method, and all of the nanocomposites exhibited boosted photocatalytic hydrogen evolution. It was discovered that the enhanced photocatalytic performance was attributed to the efficient electron transfer from TiO2 to WSe2 and the abundant active sites provided by WSe2 nanosheets. Moreover, the intimate heterojunction between WSe2 nanosheets and TiO2 favors the interfacial charge separation. As a result, a highest hydrogen evolution rate of 2.28 mmol/g·h, 114 times higher than pristine TiO2, was obtained when the weight ratio of WSe2/(WSe2 + TiO2) was adjusted to be 20%. The designed WSe2/TiO2 heterojunctions can be regarded as a promising photocatalysts for high-throughput hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call