Abstract

Heterogeneous spheroids that mimic the complex three-dimensional environment of natural tissues are needed in various biomedical applications. Geometric cues from cellular matrix play invaluable roles in governing cell behavior and phenotype. However, the structural complexity of interior morphologies of spheroids is currently limited due to poor spatial resolution of positioning/orientation of cellular constructs. Here, a coaxial capillary microfluidic device is developed to generate gelatin methacrylate (GelMA) microspheres with tunable dimensions and interior morphologies, such as core-shell, or microspheres with interior undulated wavy, or spiral canals, by manipulating the two-phase flow of hydrogel precursor solution and methylcellulose solution. The formation of diverse and exquisite interior morphologies is caused by the interacting viscous instabilities of the two-phase flow in the microfluidic system, followed by water-in-oil emulsion and photo-initiated polymerization. Polyethylene glycol diacrylate (PEGDA) is incorporated into the GelMA solution to tune the mechanical properties of the fabricated microspheres, and an optimized concentration of PEGDA is confirmed by evaluating the in vitro proliferation and vascularization of human umbilical vein endothelial cells. Further, a heterogeneous spheroid with spiral blood vessel lumen is constructed to demonstrate the versatility and potential of the proposed droplet-based microfluidic approach for building functional tissue constructs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.