Abstract

We report high output power and high-gain semiconductor optical amplifiers integrated on a heterogeneous silicon/III–V photonics platform. The devices produce 25 dB of unsaturated gain for the highest gain design, and 14 dBm of saturated output power for the highest output power design. The amplifier structure is also suitable for lasers, and can be readily integrated with a multitude of silicon photonic circuit components. These devices are useful for a wide range of photonic integrated circuits. We show a design method for optimizing the amplifier for the desired characteristics. The amplifier incorporates a low loss and low reflection transition between the heterogeneous active region and a silicon waveguide, and we report transition loss below 1 dB across the entire measurement range and parasitic reflection coefficient from the transition below $1\cdot 10^{ - 3}$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.