Abstract

We report on the heterogeneous sensitization of metal-organic framework (MOF)-driven metal-embedded metal oxide (M@MO) complex catalysts onto semiconductor metal oxide (SMO) nanofibers (NFs) via electrospinning for markedly enhanced chemical gas sensing. ZIF-8-derived Pd-loaded ZnO nanocubes (Pd@ZnO) were sensitized on both the interior and the exterior of WO3 NFs, resulting in the formation of multiheterojunction Pd-ZnO and ZnO-WO3 interfaces. The Pd@ZnO loaded WO3 NFs were found to exhibit unparalleled toluene sensitivity (Rair/Rgas = 4.37 to 100 ppb), fast gas response speed (∼20 s) and superior cross-selectivity against other interfering gases. These results demonstrate that MOF-derived M@MO complex catalysts can be functionalized within an electrospun nanofiber scaffold, thereby creating multiheterojunctions, essential for improving catalytic sensor sensitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call