Abstract
Nanoporosity of a shale gas reservoir provides essential information on the gas accumulation space and controls the gas reserves. The characteristics of heterogeneous nanoporosity of four shale samples are analyzed by combining quantitative evaluation of minerals by scanning electronic microscopy (QEMSCAN), focused ion beam-scanning electron microscopy (FIB-SEM), and nano-CT. The representative elementary area (REA) is proposed by QEMSCAN to detect the imaging area that can represent the overall contents of minerals and organic matter. Combined with the statistics of pores in minerals and organic matter by FIB-SEM, the quantitative nanoporosity is obtained. The nano-CT is used to compare the total nanoporosity that was obtained by FIB-SEM. The results show that shale has distinct characteristics in nanoporosities due to the variation in organic matter and mineral content. The major pore sizes of the organic matter and clay minerals are smaller than 400 nanometers (nm), and the pore sizes of feldspar and pyrite are mainly 200–600 nm. The pore sizes for pores developed in quartz and carbonate minerals range from a few nanometers to 1000 nm. Furthermore, pores smaller than 400 nm mainly provide the total nanoporosity. The nanoporosities in the organic matter are approximately 17%–21%. Since the organic matter content (0.54%–6.98%) is low, the organic matter contributes approximately 5%–33% of the total nanoporosity in shale. Conversely, the nanoporosities in quartz and clay are generally lower than 3%. Since the mineral content (93.02%–99.46%) is obviously higher than the organic matter content, the minerals contribute approximately 67%–95% of the total nanoporosity in shale.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have