Abstract
The coupled task allocation and path planning problem for heterogeneous multiple unmanned aerial vehicles performing a search and attack mission involving obstacles and no-fly zones are addressed. The importance of the target is measured using a time-dependent value. A task allocation algorithm is proposed to obtain the maximum system utility. In the system utility function, the reward of the target, path lengths of unmanned aerial vehicles, and number of unmanned aerial vehicles to perform a simultaneous attack are considered. The path length of the unmanned aerial vehicles based on the Pythagorean hodograph curve is calculated, and it serves as the input for the task allocation problem. A resource management method for unmanned aerial vehicles is used, so that the resource consumption of the unmanned aerial vehicles can be balanced. To satisfy the requirement of simultaneous attacks and the unmanned aerial vehicle kinematic constraints in an environment involving obstacles and no-fly zones, a distributed cooperative particle swarm optimization algorithm is developed to generate flyable and safe Pythagorean hodograph curve trajectories for unmanned aerial vehicles to achieve simultaneous arrival. Monte Carlo simulations are conducted to demonstrate the performance of the proposed task allocation and path planning method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.