Abstract
Large-scale and complex mission environments require unmanned aerial vehicles (UAVs) to deal with various types of missions while considering their operational and dynamic constraints. This article proposes a deep learning-based heterogeneous mission planning algorithm for a single UAV. We first formulate a heterogeneous mission planning problem as a vehicle routing problem (VRP). Then, we solve this by using an attention-based deep reinforcement learning approach. Attention-based neural networks are utilized as they have powerful computational efficiency in processing the sequence data for the VRP. For the input to the attention-based neural networks, the unified feature representation on heterogeneous missions is introduced, which encodes different types of missions into the same-sized vectors. In addition, a masking strategy is introduced to be able to consider the resource constraint (e.g., flight time) of the UAV. Simulation results show that the proposed approach has significantly faster computation time than that of other baseline algorithms while maintaining a relatively good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.