Abstract

Biocompatible and biodegradable polyesters have immense potential in medical applications as drug delivery vehicles and tissue engineering scaffolds. In this study, we synthesized biodegradable aliphatic polyesters, namely poly(butylene pimelate) (PBPi), poly(butylene succinate) (PBSu), and poly(butylene sebacate) (PBSe), by the polycondensation of equimolar quantities of dicarboxylic acid and diol using mesoporous SBA-15 silica as heterogeneous catalyst. We then compared its performance with a conventional homogenous catalyst, SnCl2·2H2O, which did not form these polymers. The synthesized SBA-15 catalyst was characterized by electron microscopy, nitrogen adsorption-desorption isotherm and infrared spectroscopy. The synthesized polyesters were evaluated using infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, gel permeation chromatography, scanning electron microscopy and goniometry. The combined results demonstrate that the SBA-15 mesoporous catalyst formed higher molecular weight degradable polyesters in addition to higher yield and purity, thus confirming the superiority of the mesoporous silica catalyst for polymer formation. Open image in new window

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.