Abstract
With the wide application of electromagnetic waves in national defense, communication, navigation and home appliances, the electromagnetic pollution problem is becoming more and more prominent. Therefore, high-performance, and low-density composite wave-absorbing materials have attracted much attention. In this paper, three-dimensional (3D) network structures of flower-like 1T/2H Molybdenum disulfide nanosheets anchored to carbon fibers (1T/2H MoS2/CNFs) were prepared by electrostatic spinning technique and calcination process. The morphology and electromagnetic wave absorption properties were tuned by changing the content of flower-like MoS2. The optimized 1T/2H MoS2/CNFs composite exhibits superior electromagnetic wave absorption with minimum reflection (RLmin) of −42.26 dB and effective absorption bandwidth (EAB) of 6.48 GHz at 2.5 mm. Multi-facts contribute to the super performance. First, the uniquely designed nanosheet and 3D interconnected networks leads to multiple reflection and scattering of electromagnetic waves, which promotes the attenuation of electromagnetic waves. Second, the propriate content of CNFs and MoS2 with different phase regulates its impedance matching characteristic. Third, Numerous heterogeneous interfaces existed between CNFs and MoS2, 1T and 2H MoS2 phase results in interface polarization. Besides, the 1T/2H MoS2 rich in defects induces defect polarization, improving the dielectric loss. Furthermore, the electromagnetic wave absorption performance was proved via radar reflectance cross section simulation. This work illustrates 1T/2H MoS2/CNFs is a promising material for electromagnetic absorption with wide bandwidth, strong absorption, low density, and high thermal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.