Abstract

It is a critical mission for financial service providers to discover fraudulent borrowers in a supply chain. The borrowers’ transactions in an ongoing business are inspected to support the providers’ decision on whether to lend the money. Considering multiple participants in a supply chain business, the borrowers may use sophisticated tricks to cheat, making fraud detection challenging. In this work, we propose a multitask learning framework, MultiFraud, for complex fraud detection with reasonable explanation. The heterogeneous information from multi-view around the entities is leveraged in the detection framework based on heterogeneous graph neural networks. MultiFraud enables multiple domains to share embeddings and enhance modeling capabilities for fraud detection. The developed explainer provides comprehensive explanations across multiple graphs. Experimental results on five datasets demonstrate the framework’s effectiveness in fraud detection and explanation across domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.