Abstract

The amount of water in the Earth's deep mantle is critical for the evolution of the Earth. Mineral physics studies revealed that the mantle transition zone can store several times the volume of water in an ocean. However, the actual water distribution in the transition zone remains enigmatic. We used the highest resolution images produced of scatterers in the North-American transition zone derived from teleseismic data recorded by the Earthscope Transportable Array. We find that the transition zone is filled with previously unrecognized small-scale heterogeneities that produce pervasive, negative polarity signals. Simulations demonstrated the images can be explained by low-velocity bodies shaped as distributed blobs or near vertical structures. We suggest these low-velocity bodies may be heterogeneously distributed, water-enriched subducted harzburgites produced through long-term accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.