Abstract

Tinnitus is a heterogeneous condition of hearing a rattling sound when there is no auditory stimulus. This rattling sound is associated with abnormal synchronous oscillations in auditory and non-auditory cortical areas. Since tinnitus is a highly heterogeneous condition with no objective detection criteria, it is necessary to search for indicators that can be compared between and within participants for diagnostic purposes. This study introduces heterogeneous though comparable indicators of tinnitus through investigation of spontaneous fluctuations in resting-state brain dynamics. The proposed approach uses nonlinear measures of chaos theory, to detect tinnitus and cross correlation patterns to reflect many of the previously reported neural correlates of tinnitus. These indicators may serve as effective measures of tinnitus risk even at early ages before any symptom is reported. The approach quantifies differences in oscillatory brain dynamics of tinnitus and normal subjects. It demonstrates that the left temporal areas of subjects with tinnitus exhibit larger lyapunov exponent indicating irregularity of brain dynamics in these regions. More complex dynamics is further recognized in tinnitus cases through entropy. We use this evidence to distinguish tinnitus patients from normal participants. Besides, we illustrate that certain anticorrelation patterns appear in these nonlinear measures across temporal and frontal areas in the brain perhaps corresponding to increased/decreased connectivity in certain brain networks and a shift in the balance of excitation and inhibition in tinnitus. Additionally, the main correlations are lost in tinnitus participants compared to control group suggesting involvement of distinct neural mechanisms in generation and persistence of tinnitus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call