Abstract
BackgroundTransesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO).ResultsThe chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs).ConclusionsAmong the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles.
Highlights
Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production
Catalysts characterization The crystalline structure of alumina supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (CaO, magnesium oxide (MgO), strontium oxide (SrO)) and calcium-based mixed metal oxides (CaMgO and CaZnO) base solid catalysts was revealed by X-ray diffraction pattern (Figure 1)
The XRD patterns of calcium-based mixed metal oxides catalysts recorded the patterns of both samples (CaMgO and CaZnO) were corresponded to pure oxide, and no new crystalline phase attributable to the formation of mixed oxides could be detected
Summary
Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. Industrialization processes continue to grow globally in par with human population which leads to the growing worldwide demand for energy as well as for petrochemical resources, coal and natural gases. This phenomenon has caused the depletion rate of fossil energy resources to increase exponentially and caused alarming environmental problems to the society.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have