Abstract

The aim of the proposed work is to utilize the heterogeneity information, in input signal extraction, to improve the joint force estimation from high-density surface electromyography (HD-sEMG). For this purpose, joint force and HD-sEMG signals from biceps brachii and brachialis were collected synchronously during isometric elbow flexion. The input signal of the force model was obtained after the following procedures: first, HD-sEMG signals were decomposed by principal component analysis into principal components and weight vectors; second, the first several weight maps were segmented to obtain heterogeneity information by the Otsu and Moore-Neighbor tracing methods, and the principal component covering the most activated areas (maximum heterogeneity) was selected; and last, the selected principal component was low-pass filtered to obtain the input signal. The force model was built using a polynomial fitting technique. The conventional power-based input signal was compared with our obtained input signal. According to the obtained results, the proposed heterogeneity-based input signal can reduce the force estimation error significantly than the power-based input signal. The proposed heterogeneity-based input signal extraction methods had more neuromuscular control information and will be tested in more muscles and force tasks in future works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.