Abstract

Microscopic variations in material stiffness play a vital role in cellular scale biomechanics, but are difficult to measure in a natural 3D environment. Brillouin microscopy is a promising technology for such applications, providing non-contact label-free measurement of longitudinal modulus at microscopic resolution. Here we develop heterodyne detection to measure Brillouin scattering signals in a confocal microscope setup, providing sensitive detection with excellent frequency resolution and robust operation in the presence of stray light. The functionality of the microscope is characterized and validated, and the imaging capability demonstrated by imaging structure within both a fibrin fiber network and live cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.