Abstract

When filaments from a culture of Anabaena sp. growing photoautotrophically with nitrate as a nitrogen source are placed in a nitrate-free mineral medium and incubated anaerobically in the light, the formation of heterocysts and the synthesis of nitrogenase both begin after a lag of about 24 hours. During the lag period, about 70% of the phycocyanin is destroyed. Under an atmosphere of N2-CO2, the nitrogenase activity rises to a peak value, and then falls markedly as growth at the expense of N2 begins. Phycocyanin synthesis resumes concomitantly with growth. Under an atmosphere of Ar-CO2, the formation of heterocysts and the synthesis of nitrogenase proceed to higher levels than those observed under N2-CO2, and the nitrogenase level is thereafter maintained. Under these conditions, neither growth nor resynthesis of phycocyanin occurs, and phycocyanin eventually falls to about 10% of its initial level in the filaments; however, growth can be promptly initiated if N2 is admitted to the system. The implications of these findings are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.