Abstract

AbstractPhotocatalytic solar energy conversion and environmental remediation including water splitting, CO2 reduction, and pollutant degradation have attracted rapidly growing attention, owing to global fossil fuel depletion and increasing environmental issues. From the viewpoint of the broad availability, good environmental acceptability, high corrosion resistance, as well as the readily tailorable microstructure, electronic structure and surface chemical properties, carbonaceous materials have been demonstrated as promising and sustainable low‐cost metal‐free alternatives to metal‐based photocatalysts for solar fuel production and pollutant degradation. The non‐metallic heteroatoms doping approach has been considered as a powerful tool for modulating electronic structure, morphology, surface structure and surface chemistry, textural properties, optical properties, and electrochemical properties, as well as catalytic properties of carbonaceous photocatalysts. This Review represents a comprehensive overview of the latest advance in preparation and physicochemical properties of diverse non‐metallic heteroatoms‐doped carbonaceous materials, as well as their applications in heterogeneous photocatalysis towards solar energy conversion and environmental remediation. The physicochemical properties and photocatalytic performance of the carbonaceous photocatalysts are carefully compared, as well as a brief overview of fundamental principles for the promoting effect of heteroatoms‐doping is also presented. In addition, the future perspectives on the opportunities and challenges of heteroatoms doping for fabricating novel and excellent carbonaceous photocatalysts are outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.