Abstract

Antimony-based materials with high theoretical capacity have been considered as a promising anode materials for potassium-ion batteries (PIBs). Unfortunately, the large volume expansion leads to rapid capacity fading and poor rate capability. In this work, Sb2S3 (Sb2Se3) nanodots/carbon composites are constructed through pyrolysis and co-sulfurization (selenylation) process of sodium stibogluconate for the first time. In the composite, Sb2S3 (Sb2Se3) nanodots with diameters of 15–25 nm are uniformly inlaid into S(Se)-doped carbon skeleton. Notably the ultrafine nanodots can remarkedly shorten the ions diffusion distance with enhanced kinetic process. Also the S(Se)-doped carbon would provide the stable structure support and conductive path. When applied as the anode for PIBs, they all show satisfactory potassium-storage properties in terms of high reversible capacity and superior rate capability, especially the excellent electrochemical performances of Sb2Se3 nanodots/carbon with a reversible capacity of 312.03 mAh g−1 at 1000 mA g−1 after 200 cycles, which can be attributed to the synergistic effect of nanodots and doped carbon, minimizing potassiation-induced deformations and facilitating the reversible adsorption of K ions. More importantly, the volume changes during the K+ intercalation/deintercalation process have been analyzed in details, which is well consistent with the result of electrochemical performance, as expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.