Abstract

Pancreatobililary cancers are fatal solid tumors that pose a significant threat to human life. It is imperative to investigate novel small molecule active compounds for controlling these cancers. Heterocyclic compounds (e.g. gemcitabine) and multi-substituted alkenes (e.g. resveratrol) are commonly applied in tumor treatment. Researchers have proposed that the synthesis of new trisubstituted alkenes containing heteroaromatic rings by combining these two scaffolds may be a fresh strategy to develop new active molecules. In this study, we utilized alkenyl bromide and heteroaryl boronic acid as substrates, employing Suzuki coupling to generate a series of triarylethylenes featuring nitrogen, oxygen, and sulfur atoms. Through in vitro experiments, the results indicated that some compounds exhibited remarkable anti-tumor efficacy (e.g. IC50[3be, GBC-SD]= 0.13 µM and IC50[3be, PANC-1]= 0.27 µM). The results further demonstrated that the antitumor efficacy of these compounds was dependent on the heteroatom, π-system, skeleton-bonding site, and substituent type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.