Abstract

Lithium is commonly used in the treatment of bipolar disorders (BD) and consumer electronics. It has been reported that lithium exposure is associated with mitochondrial dysfunction and oxidative stress in isolated cardiac mitochondria. Mitochondrial protection has a key role in myocardial tissue homeostasis, cardiomyocyte survival and inhibition of cardiotoxicity. Hesperidin as a flavanone and cardioprotective agent has shown high potential in antioxidant activity and restoration of mitochondrial dysfunction in different models. Therefore, we aimed to evaluate the ameliorative effects of hesperidin against lithium-induced mitochondrial toxicity in rat cardiac mitochondria. Isolated mitochondria were classified into six groups; control, lithium carbonate (125 µM), three groups of lithium + hesperidin-treated received lithium (125 µM) and hesperidin with various concentrations (10, 50, and 100 µM) and hesperidin (100 µM). Succinate dehydrogenases (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial glutathione (GSH) and lipid peroxidation (LPO) were measured. The mitochondria received lithium showed a significant reduction of SDH activity, MMP collapse, mitochondrial swelling, induction of ROS formation and lipid peroxidation. However, we observed that the administration of hesperidin (50 and 100 µM) resulted in the increase of SDH activity, improved MMP collapse, mitochondrial swelling, and reduced ROS formation and lipid peroxidation. Also, there were no obvious changes in cardiac mitochondria received of hesperidin. These findings suggest that hesperidin could reduce lithium-induced mitochondrial dysfunction through antioxidant activities in cardiac mitochondria, may be beneficial for prevention and treatment of lithium toxicities, either as a drug to treat BD or as an environmental pollutant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.