Abstract

The intestinal epithelium is a single-cell layer on the mucosal surface that absorbs food-derived nutrients and functions as a barrier that protects mucosal integrity. Hesperidin (hesperetin-7-rhamnoglucoside) is a flavanone glycoside composed of the flavanone hesperetin and the disaccharide rutinose, which has various physiological benefits, including antioxidative, anti-inflammatory, and antiallergic effects. Here, we used human intestinal Caco-2 cell monolayers to examine the effect of hesperidin on intestinal barrier function. Hesperidin-treated Caco-2 cell monolayers displayed enhanced intestinal barrier integrity, as indicated by an increase in transepithelial electrical resistance (TEER) and a decreased apparent permeability (Papp ) for fluorescein. Hesperidin elevated the mRNA and protein levels of occludin, MarvelD3, JAM-1, claudin-1, and claudin-4, which are encoded by tight junction (TJ)-related genes. Moreover, hesperidin significantly increased the phosphorylation of AMP-activated protein kinase (AMPK), indicating improved intestinal barrier function. Thus, our results suggest that hesperidin enhances intestinal barrier function by increasing the expression of TJ-related occludin, MarvelD3, JAM-1, and claudin-1 via AMPK activation in human intestinal Caco-2 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call