Abstract

A relationship for the complex amplitude of generalized paraxial Hermite-Gaussian (HG) beams is deduced. We show that under certain parameters, these beams transform into the familiar HG modes and elegant HG beams. The orbital angular momentum (OAM) of a linear combination of two generalized HG beams with a phase shift of π/2, with their double indices composed of adjacent integer numbers taken in direct and inverse order, is calculated. The modulus of the OAM is shown to be an integer number for the combination of two HG modes, always equal to unity for the superposition of two elegant HG beams, and a fractional number for two hybrid HG beams. Interestingly, a linear combination of two such HG modes also presents a mode that is characterized by a nonzero OAM and the lack of radial symmetry but does not rotate during propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.