Abstract

BackgroundHereditary renal adysplasia is an autosomal dominant trait with incomplete penetrance and variable expression that is usually associated with malformative combinations (including Müllerian anomalies) affecting different mesodermal organs such as the heart, lung, and urogenital system.Case reportA case showing pulmonary hypoplasia, hip dysplasia, hereditary renal adysplasia, and Mayer-Rokitansky-Kuster-Hauser syndrome in adulthood is reported here. The i.v. pyelography showed right renal agenesis with a normal left kidney and ureter. Ultrasound and Magnetic Resonance Imaging also showed right renal agenesis with multicystic embryonary remnants in the right hemipelvis probably corresponding to a dysgenetic kidney. An uretrocystoscopy showed absence of ectopic ureter and of the right hemitrigone. She was scheduled for a diagnostic laparoscopy and creation of a neovagina according to the McIndoe technique with a prosthesis and skin graft. Laparoscopy confirmed the absence of the uterus. On both sides, an elongated, solid, rudimentary uterine horn could be observed. Both ovaries were also elongated, located high in both abdominal flanks and somewhat dysgenetics. A conventional cytogenetic study revealed a normal female karyotype 46, XX at a level of 550 GTG bands. A CGH analysis was performed using a 244K oligoarray CGH detecting 11 copy number variants described as normal variants in the databases. The 17q12 and 22q11.21 microdeletions described in other MRKH patients were not present in this case. Four years after operation her evolution is normal, without symptoms and the neovagina is adequately functional. The geneticists have studied her family history and the pedigree of the family is shown.ConclusionsWe suggest that primary damage to the mesoderm (paraaxil, intermediate, and lateral) caused by mutations in a yet unidentified gene is responsible for: 1) skeletal dysplasia, 2) inappropriate interactions between the bronchial mesoderm and endodermal lung bud as well as between the blastema metanephric and ureteric bud, and eventually 3) Müllerian anomalies (peritoneal mesothelium) at the same level. These anomalies would be transmitted as an autosomal dominant trait with incomplete penetrance and variable expressivity.

Highlights

  • According to previous studies [1], unilateral renal agenesis (RA) is embryologically associated with genital and sometimes extragenital malformations

  • We suggest that primary damage to the mesoderm caused by mutations in a yet unidentified gene is responsible for: 1) skeletal dysplasia, 2) inappropriate interactions between the bronchial mesoderm and endodermal lung bud as well as between the blastema metanephric and ureteric bud, and eventually 3) Müllerian anomalies at the same level

  • These anomalies would be transmitted as an autosomal dominant trait with incomplete penetrance and variable expressivity

Read more

Summary

Conclusions

We suggest that primary damage to the mesoderm (paraaxil, intermediate, and lateral) caused by mutations in a yet unidentified gene is responsible for skeletal, pulmonary, renal, and for Müllerian dysplasias present in MRKH syndrome and usually transmitted as an autosomal dominant trait with incomplete penetrance and variable expressivity. Consent Written informed consent was obtained from the patient for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this Journal. Competing interests The authors declare that they have no competing interests. Authors' contributions PA and ER were the gynecologist that operated and followed the patient. PA conceived the study and participated in its design and coordination and wrote the draft of the manuscript. MA participated in the design of the study and reviewed the literature. All authors have contributed to this study. All authors read and approved the final manuscript. PA had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis

Introduction
Findings
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call