Abstract

Human epidermal growth factor receptor 2 (HER)-positive breast cancer (BC) is characterized by an aggressive clinical course. In the case of HER2 overexpression/amplification, patients benefit from HER2-targeting therapies. Standardized diagnostic HER2 assessment includes immunohistochemistry (IHC) and/or in situ hybridization (ISH). The aim of this study was to compare this “gold standard” with the Droplet Digital™ polymerase chain reaction (ddPCR), a method that allows sensitive and precise detection of copy number variations (CNV) in FFPE (formalin-fixed, paraffin-embedded) DNA samples. Partitioning of the PCR reaction into 20,000 droplets enables a precise quantitative “CN” discrimination also in heterogeneous samples. FFPE breast cancer samples (n = 170) with routinely assessed HER2 status by IHC/ISH were retrospectively analyzed using the ddPCR CNV ERBB2 assay. Comparison of HER2 status assessment by the two methods revealed concordant results in 92.9% (158/170) of the cases. Discrepant cases were verified and interpreted. For ddPCR, a cut off value of 3 HER2 copies was set to distinguish between HER2-negative and HER2-positive BC. Results obtained with the ddPCR CNV ERBB2 assay were consistent and reproducible, and serial dilutions demonstrated a high stability and sensitivity of the method. The ddPCR CNV ERBB2 assay may be a specific and convenient tool to quantify HER2 copy numbers in BC samples. In our study, this method showed high reproducibility in accuracy of HER2 assessment compared to IHC/ISH analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.