Abstract

We recently demonstrated the strong tropism of George Baker (GB) Virus A (GBVA10-9) and Plasmodium circumsporozoite protein (CPB) derived synthetic peptides towards hepatoma cells. In a first approach, these peptides were covalently bound to poly(benzyl malate) (PMLABe73) and poly(ethylene glycol)-block-PMLABe73 (PEG62-b-PMLABe73) (co)polymers, and corresponding peptide-decorated nanoparticles (NPs) were prepared by nanoprecipitation. We showed that peptide enhanced NPs internalization by hepatoma cells. In the present work, we set up a second strategy to functionalize NPs prepared from PMLABe73 derivates. First, maleimide-functionalized PMLABe73 (Mal-PMLABe73) and PEG62-b-PMLABe73 (Mal-PEG62-b-PMLABe73) were synthesized and corresponding NPs were prepared by nanoprecipitation. Then, peptides (GBVA10-9, CPB and their scramble controls GBVA10-9scr and CPBscr) with a thiol group were engrafted onto the NPs’ maleimide groups using the Michael addition to obtain peptide functionalized NPs by post-formulation procedure. These peptide-modified NPs varied in diameter and dispersity depending on the considered peptides and/or (co)polymers but kept their spherical shape. The peptide-functionalized NPs were more efficiently internalized by HepaRG hepatoma cells than native and maleimide-NPs with various levels relying on the peptide’s nature and the presence of PEG. We also observed important differences in internalization of NPs functionalized by the maleimide-thiol-peptide reaction compared to that of NPs prepared from peptide-functionalized PMLABe73 derivatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call