Abstract

A glycyrrhetinic acid-modified carboxymethyl chitosan-thioketal-rhein (GCTR) conjugate was designed and synthesized for the in vivo delivery of celastrol (Cela). Cela was encapsulated into polymeric micelles (PMs) formed by GCTR conjugates self-assembly in water to form Cela/GCTR PMs with high drug loading capacity and small particle size. Cela/GCTR PMs had a sustained-release characteristic in the blood environment and a rapid-release feature in the tumor microenvironment. Cela/GCTR PMs had a significant proliferation inhibitory effect on HepG2 and BEL-7402 cells, but a negligible impact on L-02 cells at low concentrations. Cela/GCTR PMs possessed reactive oxygen species (ROS)-responsive properties in vitro and in cells, could improve the bioavailability of Cela, and exert remarkable hepatoma-targeting properties. Cela/GCTR PMs could also effectively inhibit tumor growth with no apparent damage to different organs. In summary, GCTR PMs with good ROS-responsive and hepatoma-targeting properties are expected to be possible delivery carriers for hydrophobic antineoplastic drugs for hepatocellular carcinoma therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.