Abstract
Tissue-derived extracellular vesicles (EVs) are emerging as pivotal players to maintain organ homeostasis, which show promise as a next-generation candidate for medical use with extensive source. However, the detailed function and therapeutic potential of tissue EVs remain insufficiently studied. Here, through bulk and single-cell RNA sequencing analyses combined with ultrastructural tissue examinations, we first reveal that in situ liver tissue EVs (LT-EVs) contribute to the intricate liver regenerative process after partial hepatectomy (PHx), and that hepatocytes are the primary source of tissue EVs in the regenerating liver. Nanoscale and proteomic profiling further identify that the hepatocyte-specific tissue EVs (Hep-EVs) are strengthened to release with carrying proliferative messages after PHx. Moreover, targeted inhibition of Hep-EV release via AAV-shRab27a in vivo confirms that Hep-EVs are required to orchestrate liver regeneration. Mechanistically, Hep-EVs from the regenerating liver reciprocally stimulate hepatocyte proliferation by promoting cell cycle progression through Cyclin-dependent kinase 1 (Cdk1) activity. Notably, supplementing with Hep-EVs from the regenerating liver demonstrates translational potential and ameliorates insufficient liver regeneration. This study provides a functional and mechanistic framework showing that the release of regenerative Hep-EVs governs rapid liver regeneration, thereby enriching our understanding of physiological and endogenous tissue EVs in organ regeneration and therapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have