Abstract

DNA repair processes represent attractive synthetic lethal targets because many cancers exhibit impaired DNA repair pathways, which leads to dependence on specific repair proteins. The finding that poly (ADP-ribose) polymerase (PARP)-1 inhibitors are highly effective against cancers with deficient homologous recombination highlights the potential of this approach. In hepatitis B viral (HBV) infection, degradation of the structural maintenance of the chromosome 5/6 (Smc5/6) complex, which plays a key role in repairing double-stranded DNA breaks by homologous recombination, is induced by HBV regulatory protein X (HBx). Here, we hypothesized that a deficiency in the Smc5/6 complex in HBV-associated hepatocellular carcinoma (HCC) increases susceptibility to PARP inhibitors via a deficiency in homologous recombination. We confirmed impaired double-stranded DNA break repair in HBx-expressing HCC cells using a sensitive reporter to monitor homologous recombination. Treatment with a PARP inhibitor was significantly more effective against HBx-expressing HCC cells, and overexpression of Smc5/6 prevented these effects. Overall, our results suggest that homologous recombination deficiency in HBV-associated HCC leads to increased susceptibility to PARP inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call