Abstract

Abstract An important advance in cancer therapy in the last decade has been the development of poly ADP-ribose polymerase (PARP) inhibitors for the treatment of select ovarian and breast cancers. The clinical benefit stems from the synthetic lethality of PARP inhibitors with homologous recombination (HR) deficiency, which deficiency is prevalent in the cancer types listed above. The current model to explain the synthetic lethality is based on the observation that PARP inhibitors trap PARPs on DNA: the trapped PARPs block progression of the replisome, leading to the formation of DNA double-strand breaks (DSBs), which require HR for repair. Here, we propose a novel mechanism to explain the synthetic lethality between PARP inhibitors and HR deficiencies. We show that PARP1 functions together with the proteins TIMELESS and TIPIN to protect the replisome from transcription-replication conflicts (TRCs). In the absence of any one of these proteins, TRCs evolved into DNA DSBs that required HR for repair, explaining the observed synthetic lethality. In further support of this model, when we inhibited transcription elongation, which prevents the emergence of transcription-replication conflicts, then the HR-deficient cancer cells became resistant to PARP inhibitors. We further observed that trapping of PARPs on DNA was not required for the synthetic lethality with HR deficiency, since we could observe strong synthetic lethality simply by depleting PARP1 and PARP2 by siRNA. Rather, trapping of PARPs on DNA correlated with the ability of the various PARP inhibitors to inhibit PARP enzymatic activity in cells; the strongest trappers were also the most potent inhibitors of PARP1 in cells. In vitro, all PARP inhibitors tested were almost equipotent in their ability to inhibit the enzymatic activity of PARP1, meaning that the potency of PARP1 inhibitors in vitro did not reflect their inhibitory potency in cells. Our model provides a new framework for understanding the mechanism of action of PARP inhibitors in the clinic and the mechanisms by which resistance can emerge. Citation Format: Thanos D. Halazonetis, Michalis Petropoulos, Giacomo G. Rossetti, Angeliki Karamichali, Alena Freudenmann, Luca Iacovino, Vasilis Dionellis, Sotirios K. Sotiriou. DNA damage generated by transcription-replication conflicts explains the synthetic lethality of PARP inhibitors with homologous recombination deficiency [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1566.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call