Abstract

Iron homeostasis is critical for cellular and organismal function and is tightly regulated to prevent toxicity or anemia due to iron excess or deficiency, respectively. However, subcellular regulatory mechanisms of iron remain largely unexplored. Here, we report that SEL1L-HRD1 protein complex of endoplasmic reticulum (ER)-associated degradation (ERAD) in hepatocytes controls systemic iron homeostasis in a ceruloplasmin (CP)-dependent, and ER stress-independent, manner. Mice with hepatocyte-specific Sel1L deficiency exhibit altered basal iron homeostasis and are sensitized to iron deficiency while resistant to iron overload. Proteomics screening for a factor linking ERAD deficiency to altered iron homeostasis identifies CP, a key ferroxidase involved in systemic iron distribution by catalyzing iron oxidation and efflux from tissues. Indeed, CP is highly unstable and a bona fide substrate of SEL1L-HRD1 ERAD. In the absence of ERAD, CP protein accumulates in the ER and is shunted to refolding, leading to elevated secretion. Providing clinical relevance of these findings, SEL1L-HRD1 ERAD is responsible for the degradation of a subset of disease-causing CP mutants, thereby attenuating their pathogenicity. Together, this study uncovers the role of SEL1L-HRD1 ERAD in systemic iron homeostasis and provides insights into protein misfolding-associated proteotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.