Abstract

Cryogel based scaffolds have high porosity with interconnected macropores that may provide cell compatible microenvironment. In addition, cryogel based scaffolds can be utilized in minimally invasive surgery due to its sponge-like properties, including rapid shape recovery and injectability. Herein, we developed an injectable cryogel by conjugating heparin to gelatin as a carrier for vascular endothelial growth factor (VEGF) and fibroblasts in hindlimb ischemic disease. Our gelatin/heparin cryogel showed gelatin concentration-dependent mechanical properties, swelling ratios, interconnected porosities, and elasticities. In addition, controlled release of VEGF led to effective angiogenic responses both in vitro and in vivo. Furthermore, its sponge-like properties enabled cryogels to be applied as an injectable carrier system for in vivo cells and growth factor delivery. Our heparin functionalized injectable cryogel facilitated the angiogenic potential by facilitating neovascularization in a hindlimb ischemia model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.