Abstract

Experiments were conducted (i) to determine the hemodynamic (blood pressure and heart rate) responses of conscious rats following intrathecal (IT) administration of endogenous prodynorphin-derived opioids into the lower thoracic space, (ii) to identify the receptors involved in mediating their cardiovascular responses, and (iii) to reveal any possible hemodynamic interactions with the neuropeptide arginine vasopressin. Male Sprague-Dawley rats were surgically prepared with femoral arterial and venous catheters as well as a spinal catheter (into lower thoracic region, T9-T12). After recovery, hemodynamic responses were observed in conscious rats for 5-10 min after IT injections of artificial cerebrospinal fluid (CSF) solution, prodynorphin-derived opioids (dynorphin A, dynorphin B, dynorphin A (1-13), dynorphin A (1-10), alpha- and beta-neoendorphin, leucine enkephalin (LE), methionine enkephalin (ME), arginine vasopressin (AVP), or norepinephrine (NE)). IT injections of AVP (10 or 20 pmol), dynorphin A (1-13), or dynorphin A (10-20 nmol) caused pressor effects associated with a prolonged and significant bradycardia. Equimolar (20 nmol) concentrations of LE, ME, alpha- and beta-neoendorphin, and dynorphin A (1-10) caused no significant blood pressure or heart rate changes. Combined IT injections of dynorphin A (1-13) and AVP caused apparent additive pressor effects when compared with the same dose of either peptide given alone. IT infusion of the specific AVP-V1 antagonist d(CH2)5Tyr(Me)AVP before subsequent IT AVP, dynorphin A (1-13), or NE administration inhibited only the subsequent pressor responses to AVP. The kappa-opioid antagonist (Mr2266) infused IT blocked the pressor actions of subsequent dynorphin A administration and not AVP or NE.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.