Abstract

Dynamic hyperinflation (DH) is common in chronic obstructive pulmonary disease and is associated with dyspnea and exercise intolerance. DH also has adverse cardiac effects, although the magnitude of DH and the mechanisms responsible for the hemodynamic impairment remain unclear. We hypothesized that incrementally increasing DH would systematically reduce left ventricular (LV) end-diastolic volume (LVEDV) and LV stroke volume (LVSV) because of direct ventricular interaction. Twenty-three healthy subjects (22 ± 2 yr) were exposed to varying degrees of expiratory loading to induce DH such that inspiratory capacity was decreased by 25%, 50%, 75%, and 100% (100% DH = inspiratory capacity of resting tidal volume plus inspiratory reserve volume ≈ 0.5 l). LV volumes, LV geometry, inferior vena cava collapsibility, and LV end-systolic wall stress were assessed by triplane echocardiography. 25% DH reduced LVEDV (-6 ± 5%) and LVSV (-9 ± 8%). 50% DH elicited a similar response in LVEDV (-6 ± 7%) and LVSV (-11 ± 10%) and was associated with significant septal flattening [31 ± 32% increase in the radius of septal curvature at end diastole (RSC-ED)]. 75% DH caused a larger reduction in LVEDV and LVSV (-9 ± 7% and -16 ± 10%, respectively) and RSC-ED (49 ± 70%). 100% DH caused the largest reduction in LVEDV and LVSV (-13 ± 9% and -18 ± 9%) and an increase in RSC-ED (56 ± 63%). Inferior vena cava collapsibility and LV afterload (LV end-systolic wall stress) were unchanged at all levels of DH. Modest DH (-0.6 ± 0.2 l inspiratory reserve volume) reduced LVSV because of reduced LVEDV, likely because of increased pulmonary vascular resistance. At higher levels of DH, direct ventricular interaction may be the primary cause of attenuated LVSV, as indicated by septal flattening because of a greater relative increase in right ventricular pressure and/or mediastinal constraint. NEW & NOTEWORTHY By systematically reducing inspiratory capacity during spontaneous breathing, we demonstrate that dynamic hyperinflation (DH) progressively reduces left ventricular (LV) end diastolic volume and LV stroke volume. Evidence of significant septal flattening suggests that direct ventricular interaction may be primarily responsible for the reduced LV stroke volume during DH. Hemodynamic impairment appears to occur at relatively lower levels of DH and may have important clinical implications for patients with chronic obstructive pulmonary disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.