Abstract

The Low-profile Visualized Intraluminal Support device (LVIS) has been successfully used to treat cerebral aneurysm, and the push-pull technique has been used clinically to compact the stent across aneurysm orifice. Our aim was to exhibit the hemodynamic effect of the compacted LVIS stent. Two patient-specific aneurysm models were constructed from three-dimensional angiographic images. The uniform LVIS stent, compacted LVIS and Pipeline Embolization Device (PED) with or without coil embolization were virtually deployed into aneurysm models to perform hemodynamic analysis. Intra-aneurysmal flow parameters were calculated to assess hemodynamic differences among different models. The compacted LVIS had the highest metal coverage across the aneurysm orifice (case 1, 46.37%; case 2, 67.01%). However, the PED achieved the highest pore density (case 1, 19.56 pores/mm2; case 2, 18.07 pores/mm2). The compacted LVIS produced a much higher intra-aneurysmal flow reduction than the uniform LVIS. The PED showed a higher intra-aneurysmal flow reduction than the compacted LVIS in case 1, but the results were comparable in case 2. After stent placement, the intra-aneurysmal flow was further reduced as subsequent coil embolization. The compacted LVIS stent with coils produced a similar reduction in intra-aneurysmal flow to that of the PED. The combined characteristics of stent metal coverage and pore density should be considered when assessing the flow diversion effects of stents. More intra-aneurysmal flow reductions could be introduced by compacted LVIS stent than the uniform one. Compared with PED, compacted LVIS stent may exhibit a flow-diverting effect comparable to that of the PED.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.