Abstract

Cooperativity depends on the existence of equilibria among functionally distinct conformational states that are affected by homo and heterotropic effectors. In order to isolate the quaternary conformations of hemocyanin from E. californicum, the 24-meric giant protein was encapsulated in wet, nanoporous silica gels, either in the absence or presence of oxygen. The deoxy- and oxy-hemocyanin gels exhibit a p50 for oxygen of 11 and 2.5 torr, respectively, values in close agreement with those for hemocyanin in solution. The observed Hill coefficients are lower than unity, indicating a conformational heterogeneity within each locked conformational state, a finding in agreement with the assumption that at least four conformational states are required to explain the oxygen binding properties of E. californicum hemocyanin in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.