Abstract

Cystathionine β-synthase (CBS) is an enzyme involved in sulfur metabolism that catalyzes the pyridoxal phosphate-dependent condensation of homocysteine with serine or cysteine to form cystathionine and water or hydrogen sulfide (H2S), respectively. CBS possesses a b-type heme coordinated by histidine and cysteine. Fe(III)-CBS is inert toward exogenous ligands, while Fe(II)-CBS is reactive. Both Fe(III)- and Fe(II)-CBS are sensitive to mercury compounds. In this study, we describe the kinetics of the reactions with mercuric chloride (HgCl2) and p-chloromercuribenzoic acid. These reactions were multiphasic and resulted in five-coordinate CBS lacking thiolate ligation, with six-coordinate species as intermediates. Computational QM/MM studies supported the feasibility of formation of species in which the thiolate is proximal to both the iron ion and the mercury compound. The reactions of Fe(II)-CBS were faster than those of Fe(III)-CBS. The observed rate constants of the first phase increased hyperbolically with concentration of the mercury compounds, with limiting values of 0.3–0.4 s–1 for Fe(III)-CBS and 40 ± 4 s–1 for Fe(II)-CBS. The data were interpreted in terms of alternative models of conformational selection or induced fit. Exposure of Fe(III)-CBS to HgCl2 led to heme release and activity loss. Our study reveals the complexity of the interactions between mercury compounds and CBS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call