Abstract

Carbon monoxide (CO) is a signaling gas produced intracellularly by heme oxygenase (HO) enzymes using heme as a substrate. During heme breakdown, HO-1 and HO-2 release CO, biliverdin, and Fe(2+). In this study, we investigated the effects of manipulation of the HO-1 system in an in vivo model of focal ischemia-reperfusion (FIR) in the rat heart. Male Wistar albino rats, under general anesthesia and artificial ventilation, underwent thoracotomy, the pericardium was opened, and a silk suture was placed around the left descending coronary artery; ischemia was induced by tightening the suture and was monitored for 30 min. Subsequently, the ligature was released to allow reperfusion lasting for 60 min. The first group of rats was sham operated and injected intraperitoneally (i.p.) with saline. The second group underwent FIR. The third group was treated ip 18 hr before FIR with hemin (4 mg/kg). The fourth group was pretreated ip 24 hr before FIR and 6 hr before hemin with zinc protoporphyrin IX (ZnPP-IX, 50 microg/kg). Specimens of the left ventricle were taken for determination of HO expression and activity, infarct size, malonyldialdehyde (MDA) production, and tissue calcium content. FIR led to a significant increase in the generation of MDA and notably raised tissue calcium levels. Induction of HO-1 by hemin significantly decreased infarct size, incidence of reperfusion arrhythmias, MDA generation, and calcium overload induced by FIR. These effects were prevented by the HO-1 inhibitor ZnPP-IX. The present experiments show that the concerted actions of CO, iron, and biliverdin/bilirubin modulate the FIR-induced myocardial injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.