Abstract
Acute lung injury (ALI) remains a global public health issue without specific and effective treatment options available in the clinic. Alveolar macrophage polarization is involved in the initiation, development and progression of ALI; however, the underlying mechanism remains poorly understood. Heme oxygenase-1 (HO-1) acts as an antioxidant in pulmonary inflammation and has been demonstrated to be linked with the severity and prognosis of ALI. In this study, the therapeutic effects of HO-1 were examined, along with the mechanisms involved, mainly focusing on alveolar macrophage polarization. HO-1 depletion induced higher iNOS and CD86 (M1 phenotype) expression but was significantly decreased in Arg-1 and CD206 (M2 phenotype) expression in BALF alveolar macrophages after equivalent LPS stimulation. We also found that HO-1 deletion distinctly accelerated the expression of inflammasome-associated components NLRP3, ASC and caspase-1 in vivo and in vivo and in vitro. Moreover, on the basis of LPS for MH-S cells, levels of TXNIP, NLRP3, ASC and caspase-1 were increased and HO-1 depletion exacerbated these changes, whereas double depletion of HO-1 and TXNIP partially mitigated these elevations. Also, HO-1 knockdown induced more M1 phenotype and less M2 phenotype compared with LPS alone, whereas double silence of HO-1 and TXNIP partially changed the polarization state. Taken together, we demonstrated that HO-1 could modulate macrophage polarization via TXNIP/NLRP3 signaling pathway, which could be a potential therapeutic target for ALI treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have