Abstract

To gain insight into the chloroplast-to-nucleus signaling role of tetrapyrroles, Chlamydomonas reinhardtii mutants in the Mg-chelatase that catalyzes the insertion of magnesium into protoporphyrin IX were isolated and characterized. The four mutants lack chlorophyll and show reduced levels of Mg-tetrapyrroles but increased levels of soluble heme. In the mutants, light induction of HSP70A was preserved, although Mg-protoporphyrin IX has been implicated in this induction. In wild-type cells, a shift from dark to light resulted in a transient reduction in heme levels, while the levels of Mg-protoporphyrin IX, its methyl ester, and protoporphyrin IX increased. Hemin feeding to cultures in the dark activated HSP70A. This induction was mediated by the same plastid response element (PRE) in the HSP70A promoter that has been shown to mediate induction by Mg-protoporphyrin IX and light. Other nuclear genes that harbor a PRE in their promoters also were inducible by hemin feeding. Extended incubation with hemin abrogated the competence to induce HSP70A by light or Mg-protoporphyrin IX, indicating that these signals converge on the same pathway. We propose that Mg-protoporphyrin IX and heme may serve as plastid signals that regulate the expression of nuclear genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.