Abstract

BackgroundBrain metastases (BrM) develop in 20–40% of cancer patients and represent an unmet clinical need. Limited access of drugs into the brain because of the blood-brain barrier is at least partially responsible for therapeutic failure, necessitating improved drug delivery systems.MethodsGreen fluorescent protein (GFP)-transduced murine and nontransduced human hematopoietic stem cells (HSCs) were administered into mice (n = 10 and 3). The HSC progeny in mouse BrM and in patient-derived BrM tissue (n = 6) was characterized by flow cytometry and immunofluorescence. Promoters driving gene expression, specifically within the BrM-infiltrating HSC progeny, were identified through differential gene-expression analysis and subsequent validation of a series of promoter-green fluorescent protein-reporter constructs in mice (n = 5). One of the promoters was used to deliver tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) to BrM in mice (n = 17/21 for TRAIL vs control group).ResultsHSC progeny (consisting mostly of macrophages) efficiently homed to macrometastases (mean [SD] = 37.6% [7.2%] of all infiltrating cells for murine HSC progeny; 27.9% mean [SD] = 27.9% [4.9%] of infiltrating CD45+ hematopoietic cells for human HSC progeny) and micrometastases in mice (19.3–53.3% of all macrophages for murine HSCs). Macrophages were also abundant in patient-derived BrM tissue (mean [SD] = 8.8% [7.8%]). Collectively, this provided a rationale to optimize the delivery of gene therapy to BrM within myeloid cells. MMP14 promoter emerged as the strongest promoter construct capable of limiting gene expression to BrM-infiltrating myeloid cells in mice. TRAIL delivered under MMP14 promoter statistically significantly prolonged survival in mice (mean [SD] = 19.0 [3.4] vs mean [SD] = 15.0 [2.0] days for TRAIL vs control group; two-sided P = .006), demonstrating therapeutic and translational potential of our approach.ConclusionsOur study establishes HSC gene therapy using a myeloid cell–specific promoter as a new strategy to target BrM. This approach, with strong translational value, has potential to overcome the blood-brain barrier, target micrometastases, and control multifocal lesions.

Highlights

  • Brain metastases (BrM) develop in 20–40% of cancer patients and represent an unmet clinical need

  • To determine the proportion of BrM-infiltrating cells originating from the hematopoietic stem cells (HSCs) as opposed to the yolk sack– derived brain-resident microglia [22], we generated bone marrow chimeras through transplantation of GFPþ HSCs into irradiated mice, resulting in mean (SD) 1⁄4 73.4% (6.6%) GFPþ cells in the blood

  • Infiltration of GFPþ HSC progeny into normal tumor-adjacent brain was statistically significantly lower than infiltration into tumors (Figure 1G)

Read more

Summary

Introduction

Brain metastases (BrM) develop in 20–40% of cancer patients and represent an unmet clinical need. Macrophages were abundant in patient-derived BrM tissue (mean [SD] 1⁄4 8.8% [7.8%]) This provided a rationale to optimize the delivery of gene therapy to BrM within myeloid cells. TRAIL delivered under MMP14 promoter statistically significantly prolonged survival in mice (mean [SD] 1⁄4 19.0 [3.4] vs mean [SD] 1⁄4 15.0 [2.0] days for TRAIL vs control group; two-sided P 1⁄4 .006), demonstrating therapeutic and translational potential of our approach. Conclusions: Our study establishes HSC gene therapy using a myeloid cell–specific promoter as a new strategy to target BrM. This approach, with strong translational value, has potential to overcome the blood-brain barrier, target micrometastases, and control multifocal lesions

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.