Abstract

Plesiosaurs are a prominent group of Mesozoic marine reptiles, belonging to the more inclusive clades Pistosauroidea and Sauropterygia. In the Middle Triassic, the early pistosauroid ancestors of plesiosaurs left their ancestral coastal habitats and increasingly adapted to a life in the open ocean. This ecological shift was accompanied by profound changes in locomotion, sensory ecology and metabolism. However, investigations of physiological adaptations on the cellular level related to the pelagic lifestyle are lacking so far. Using vascular canal diameter, derived from osteohistological thin-sections, we show that inferred red blood cell size significantly increases in pistosauroids compared to more basal sauropterygians. This change appears to have occurred in conjunction with the dispersal to open marine environments, with cell size remaining consistently large in plesiosaurs. Enlarged red blood cells likely represent an adaptation of plesiosaurs repeated deep dives in the pelagic habitat and mirror conditions found in extant marine mammals and birds. Our results emphasize physiological aspects of adaptive convergence among fossil and extant marine amniotes and add to our current understanding of plesiosaur evolution.

Highlights

  • The Sauropterygia arguably were the most successful clade of marine reptiles in the Mesozoic Era (Motani, 2009; Kelley & Pyenson, 2015; Renesto & Dalla Vecchia, 2018)

  • Body mass and red blood cells (RBC) size in extant reptiles We found evidence for a weak influence of body mass on RBC size in reptiles using the size proxies area and length among extant reptile species (Fig. 4)

  • Our phylogenetic eigenvector maps (PEM) model on RBC size parameters was based on RBC and vascular canal dimension data published by Huttenlocker & Farmer (2017)

Read more

Summary

Introduction

The Sauropterygia arguably were the most successful clade of marine reptiles in the Mesozoic Era (Motani, 2009; Kelley & Pyenson, 2015; Renesto & Dalla Vecchia, 2018). The most speciose and long-lived taxon among sauropterygians were the Eosauropterygia, which emerged in the Early Triassic (Rieppel, 2000; Benson, Evans & Druckenmiller, 2012; Jiang et al, 2014; Renesto & Dalla Vecchia, 2018). This clade traditionally includes two major groups, the small-bodied Pachypleurosauridae, whose monophyly is debated (Holmes, Cheng & Wu, 2008; Klein, 2010), and the larger, morphologically more diverse.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call