Abstract

AbstractThe preparation of hematite nanorod electrodes modified with molybdenum and their photoelectrochemical behavior for water photooxidation have been addressed in the quest for improved electrodes for water splitting. The hematite nanorods were synthesized through chemical bath deposition, and Mo was added by following two variants of a drop‐casting method based on ammonium heptamolybdate solutions. FE‐SEM, TEM, XRD, and XPS were employed for electrode structural and morphological characterization. The reported results reveal that the impregnation method does not cause significant changes in the hematite structure and nanorod morphology. Importantly, the modification with Mo triggers a significant improvement in the photoactivity of the electrodes, obtaining a photocurrent increase of up to 43×. A specific Mott−Schottky analysis applicable to nanostructured electrodes was performed, revealing that the modification with Mo leads to an increase in electron concentration and to a shift of the flat band potential toward more positive values. A second role of Mo as a passivating agent needs to be invoked to explain the experimental observations. It is worth noting that this modification method allows precise control of the amount of Mo contained in the samples while maintaining the morphology of the electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.